Monday, 29 September 2014

real analysis - What can we conclude from $f(x+y)+f(x-y)=f(xy)$?


Let $f : \mathbb{R}\rightarrow\mathbb{R}$ be a function such that $f(x + y) + f(x − y) = f(xy)$ for all $x, y \in\mathbb{R}$. Then $f$ is:



A. Strictly increasing.



B. Strictly decreasing.



C. Identically zero.




D. Constant but not necessarily zero.




I have no idea how to do this. Thanks for any hint.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...