Monday 8 September 2014

calculus - Integral ${largeint}_0^inftyfrac{dx}{sqrt[4]{7+cosh x}}$



How to prove the following conjectured identity?
$$\int_0^\infty\frac{dx}{\sqrt[4]{7+\cosh x}}\stackrel{\color{#a0a0a0}?}=\frac{\sqrt[4]6}{3\sqrt\pi}\Gamma^2\big(\tfrac14\big)\tag1$$
It holds numerically with precision of at least $1000$ decimal digits.



Are there any other integers under the radical except $7$ and $1$ that result in a nice closed form?


Answer



I will follow @user15302's idea. In this answer, I showed that




$$ \int_{0}^{\infty} \frac{dx}{(a + \cosh x)^{s}} \, dx = \frac{1}{(a+1)^{s}} \int_{0}^{1} \frac{v^{s-1}}{\sqrt{(1-v)(1-bv)}} \, dv, $$



where $b = \frac{a-1}{a+1}$. Now let $I$ denote the Vladimir's integral and set $s = \frac{1}{4}$ and $a = 7$. Then we have $b = \frac{3}{4}$ and



$$ I = 2^{-3/4} \int_{0}^{1} \frac{1}{v^{3/4}\sqrt{(1-v)(1-\frac{3}{4}v)}} \, dv. $$



The reason why the case $b = \frac{3}{4}$ is special is that, if we plug $v = \operatorname{sech}^2 t$ then we can utilize the triple angle formula to get the following surprisingly neat integral



$$ I = 2^{5/4} \int_{0}^{\infty} \frac{\cosh t}{\sqrt{\cosh 3t}} \, dt. $$




Now using the substitution $x = e^{-6t}$, we easily find that



$$ I = \frac{1}{3 \sqrt[4]{2}} \int_{0}^{1} \frac{x^{-11/12} + u^{-7/12}}{\sqrt{1+x}} \, dx = \frac{1}{3 \sqrt[4]{2}} \int_{0}^{\infty} \frac{dx}{x^{11/12}\sqrt{1+x}}. $$



The last integral can be easily calculated by the following formula



$$ \int_{0}^{\infty} \frac{x^{a-1}}{(1+x)^{a+b}} \, dx = \beta(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}. $$



Therefore we obtain the following closed form




$$ I = \frac{\Gamma(\frac{1}{12})\Gamma(\frac{5}{12})}{3 \sqrt[4]{2}\sqrt{\pi}}. $$



In order to verify that this is exactly the same as Vladimir's result, We utilize the Legendre multiplication formula and the reflection formula to find that



$$ \Gamma(\tfrac{1}{12})\Gamma(\tfrac{5}{12})
= \frac{\Gamma(\tfrac{1}{12})\Gamma(\tfrac{5}{12})\Gamma(\tfrac{9}{12})}{\Gamma(\tfrac{3}{4})}
= \frac{2 \pi \cdot 3^{1/4} \Gamma(\frac{1}{4})}{\Gamma(\tfrac{3}{4})}
= 2^{1/2} 3^{1/4} \Gamma(\tfrac{1}{4})^2. $$




This completes the proof.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...