I have seen the proof done different ways, but none using the norm definitions provided.
Given:
$||x||_p = (|x_1|^p+|x_2|^p)^{1/p}$ and $||x||_\infty = max(|x_1|,|x_2|)$
Prove:
$\lim_{p\rightarrow\infty}\|x\|_p = \|x\|_\infty$
I have looked at the similar questions:
The $ l^{\infty} $-norm is equal to the limit of the $ l^{p} $-norms. and Limit of $\|x\|_p$ as $p\rightarrow\infty$ but they both seem to use quite different approaches (we have not covered homogeneity so that is out of the question, and the other uses a different definition for the infity norm).
No comments:
Post a Comment