Thursday, 6 November 2014

calculus - Sum $sum _{ n=1 }^{ infty }{ frac { 2n }{ left( n+1 right) ! } } $



I need find a Telescopic or Geometric Series but I dont know how do that. I tried everything but nothing work. help me please



$$\sum _{ n=1 }^{ \infty }{ \frac { 2n }{ \left( n+1 \right) ! } } $$


Answer



We have $$\sum_{n = 1}^\infty \frac{2n}{(n+1)!} = 2\sum_{n = 1}^\infty \frac{(n+1) - 1}{(n+1)!} = 2\sum_{n = 1}^\infty \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...