Sunday, 9 November 2014

linear algebra - How do I find the characteristic polynomial and eigenvalues?

For the following matrix, compute





  1. its characteristic polynomial

  2. its eigenvalues



$$A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{bmatrix}$$



So I think I know to find the characteristic polynomial, I have to compute det(A-$\lambda$I) = 0.
Which gives...



$$A-\lambda I = \begin{bmatrix}-\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 2 & -5 & 4-\lambda\end{bmatrix}$$




$$-\lambda\begin{vmatrix}-\lambda & 1 \\ -5 & 4-\lambda\end{vmatrix} - 1 \begin{vmatrix}0 & 1 \\2 & 4-\lambda\end{vmatrix} $$



After calculating the determinant I get, $-\lambda(-4\lambda + \lambda^{2}+5) +2 = 0 $



What do I do next? I'm completely stuck.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...