For the following matrix, compute
- its characteristic polynomial
- its eigenvalues
$$A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{bmatrix}$$
So I think I know to find the characteristic polynomial, I have to compute det(A-$\lambda$I) = 0.
Which gives...
$$A-\lambda I = \begin{bmatrix}-\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 2 & -5 & 4-\lambda\end{bmatrix}$$
$$-\lambda\begin{vmatrix}-\lambda & 1 \\ -5 & 4-\lambda\end{vmatrix} - 1 \begin{vmatrix}0 & 1 \\2 & 4-\lambda\end{vmatrix} $$
After calculating the determinant I get, $-\lambda(-4\lambda + \lambda^{2}+5) +2 = 0 $
What do I do next? I'm completely stuck.
No comments:
Post a Comment