The Ramanujan Summation of some infinite sums is consistent with a couple of sets of values of the Riemann zeta function. We have, for instance, $$\zeta(-2n)=\sum_{n=1}^{\infty} n^{2k} = 0 (\mathfrak{R}) $$ (for non-negative integer $k$) and $$\zeta(-(2n+1))=-\frac{B_{2k}}{2k} (\mathfrak{R})$$ (again, $k \in \mathbb{N} $). Here, $B_k$ is the $k$'th Bernoulli number. However, it does not hold when, for example, $$\sum_{n=1}^{\infty} \frac{1}{n}=\gamma (\mathfrak{R})$$ (here $\gamma$ denotes the Euler-Mascheroni Constant) as it is not equal to $$\zeta(1)=\infty$$.
Question: Are the first two examples I stated the only instances in which the Ramanujan summation of some infinite series coincides with the values of the Riemann zeta function?
No comments:
Post a Comment