Thursday, 14 January 2016

analytic number theory - Values of the Riemann Zeta function and the Ramanujan Summation - How strong is the connection?

The Ramanujan Summation of some infinite sums is consistent with a couple of sets of values of the Riemann zeta function. We have, for instance, $$\zeta(-2n)=\sum_{n=1}^{\infty} n^{2k} = 0 (\mathfrak{R}) $$ (for non-negative integer $k$) and $$\zeta(-(2n+1))=-\frac{B_{2k}}{2k} (\mathfrak{R})$$ (again, $k \in \mathbb{N} $). Here, $B_k$ is the $k$'th Bernoulli number. However, it does not hold when, for example, $$\sum_{n=1}^{\infty} \frac{1}{n}=\gamma (\mathfrak{R})$$ (here $\gamma$ denotes the Euler-Mascheroni Constant) as it is not equal to $$\zeta(1)=\infty$$.



Question: Are the first two examples I stated the only instances in which the Ramanujan summation of some infinite series coincides with the values of the Riemann zeta function?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...