Wednesday, 20 January 2016

sequences and series - Evaluating $sumlimits_{i=1}^{a-1} i = frac{a(a-1)}{2}$

I'm pretty sure $$\sum\limits_{i=1}^{a-1} i = \frac{a(a-1)}{2}$$ using the relationship $\sum\limits_{i=1}^{n} i = \frac{n(n+1)}{2}$.



It looks similar to $$\sum\limits_{i=a}^{n} i = \frac{(n+a)(n-a+1)}{2}$$ but I'm not sure how or why does$$\sum\limits_{i=a}^{n} i = \frac{(n+a)(n-a+1)}{2}?$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...