Saturday, 16 January 2016

fourier analysis - Find flaw in solving for coefficients of $e^x = A_0 + sumlimits_{n=1}^infty A_n cos frac{n pi x}{L}$

\begin{align*}
e^x &\sim A_0 + \sum\limits_{n=1}^\infty A_n \cos \frac{n \pi x}{L} \\
\end{align*}



The Fourier cosine series on the right will be even extended periodized version of $e^x$.



Now, I could solve for these coefficients directly,




\begin{align*}
A_n &= \frac{2}{L} \int_0^L e^x \cos \frac{n \pi x} \, dx \\
\end{align*}



But this exercise asks for a different solution.



We can apply term by term differentiation to yield:



\begin{align*}
e^x &\sim - \sum\limits_{n=1}^\infty \frac{n \pi}{L} A_n \sin \frac{n \pi x}{L} \\

\end{align*}



Setting the two definitions of $e^x$ equal yields the following which is equality for $[0,L]$:



\begin{align*}
A_0 + \sum\limits_{n=1}^\infty A_n \cos \frac{n \pi x}{L} &\sim - \sum\limits_{n=1}^\infty \frac{n \pi}{L} A_n \sin \frac{n \pi x}{L} \\
\end{align*}



From there, how can I derive $A_n$?




EDIT: I found my original flaw, that last equation is only equality for $[0,L]$, not for $[-L,L]$. However, I'm still not sure how to calculate $A_n$ via this technique.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...