Sunday, 17 January 2016

calculus - Does $sum_{n=2}^infty frac{1}{nlog(n)}$ converge or diverge?

So I know that $\sum_{n\in\mathbb{N}}1/n$ diverges and $\sum_{n\in\mathbb{N}}1/n^2$ converges. What about the series $\sum_{n=2}^\infty1/n(\log(n))$? I'm pretty confident that it diverges but is there a quick justification?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...