Friday, 29 January 2016

linear algebra - Let $A$ and $B$ be two $3×3$ matrices with real entries such that $rank(A) = rank(B) =1$.

Let $A$ and $B$ be two $3×3$ matrices with real entries such that $rank(A) = rank(B) =1$. Let $N(A)$ and $R(A)$ stand for the null space and range space of $A$. Define $N(B)$ and $R(B)$ similarly. Then which of the following is necessarily true ?



$(A) \dim(N(A) ∩ N(B)) ≥ 1$.



$(B) \dim(N(A) ∩ R(A)) ≥ 1.$




$(C) \dim(R(A) ∩ R(B)) ≥ 1.$



$(D) \dim(N(B) ∩ R(B)) ≥ 1.$



I am feeling that option A is true..Can anyone help me in this..

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...