Show that :
∫π20ln2(Acos(x))ln2(Asin(x))cos(x)sin(x)dx=14[2ζ(5)−ζ(2)ζ(3)]
I can only do non squared one. Anyone has a clue?
Answer
Related problems: (I), (II), (III), (IV), (V), (6). Use the change of variables ln(cos(x))=t to transform the integral to
I=∫π20ln2cosxln2sinxcosxsinxdx=14∫0−∞t2(ln(1−e2t))21−e2tdt.
Follow it by another change of variables 1−e2t=z gives
14∫0−∞t2(ln(1−e2t))21−e2tdt=132∫10(ln(1−z))2(ln(z))2z(1−z)dz
=132∫10(ln(1−z))2(ln(z))2zdz+132∫10(ln(1−z))2(ln(z))2(1−z)dz
⟹I=116∫10(ln(1−z))2(ln(z))2zdz⟶(1).
Getting the exact result: Integral (1) can be evaluated as
116∫10(ln(1−z))2(ln(z))2zdz=116lim
= \frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\beta(s,w+1)=\frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}
I=\frac{1}{4}\left( 2\zeta \left( 5 \right)-\zeta \left( 2 \right)\zeta \left( 3 \right) \right) \longrightarrow (*),
where \beta(u,v) is the beta function.
Other forms for the solution 1: Using integration by parts with u=\ln^2(1-z), integral (1) can be written as
\frac{1}{16}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right)^{2} \left( \ln \left( z \right)\right)^{2}}{z }}{dz}=\frac{1}{24}\,\int _{0}^{1}\!{\frac{ \ln\left( 1-z \right)\left( \ln \left( z \right) \right)^{3}}{1-z}}{dz}
= -\sum_{n=0}^{\infty}(\psi(n+1)+\gamma)\int_{0}^{1}z^n\ln^3(z)dz = \frac{1}{4}\sum_{n=0}^{\infty}\frac{\psi(n+1)+\gamma}{(n+1)^4}.
I= \frac{1}{4}\sum_{n=1}^{\infty}\frac{\psi(n)}{n^4}+\frac{\gamma}{4}\zeta(4)\sim 0.02413779000 \longrightarrow (**).
You can use the identity H_{n-1}=\psi(n)+\gamma , where H_n are the harmonic numbers, to write the result as
I=\frac{1}{4}\sum_{n=1}^{\infty}\frac{H_{n-1}}{n^4} \longrightarrow (***).
Other forms for the solution 2: We can have the following form for the solution
I=\frac{1}{16}\sum_{n=1}^{\infty}\frac{H^2_{n}}{n^3}+\frac{1}{16}\sum_{n=1}^{\infty}\frac{\psi'(n+1)}{n^3}-\frac{1}{16}\zeta(2)\zeta(3)\longrightarrow (****).
Note 1: we used the power series expansion of the function \frac{\ln(1-z)}{1-z},
\frac{\ln(1-z)}{1-z}= -\sum _{n=0}^{\infty } \left( \psi \left( n+1 \right) + \gamma \right){x}^{n}=-\sum _{n=0}^{\infty } H_{n}{x}^{n}.
Note 2: Try to tackle integral (1) using the technique used in solving your previous question.
No comments:
Post a Comment