Thursday, 21 January 2016

calculus - Show that intpi/20fraclog2sinxlog2cosxcosxsinxmathrmdx=frac14left(2zeta(5)zeta(2)zeta(3)right)





Show that :
π20ln2(Acos(x))ln2(Asin(x))cos(x)sin(x)dx=14[2ζ(5)ζ(2)ζ(3)]




I can only do non squared one. Anyone has a clue?


Answer



Related problems: (I), (II), (III), (IV), (V), (6). Use the change of variables ln(cos(x))=t to transform the integral to




I=π20ln2cosxln2sinxcosxsinxdx=140t2(ln(1e2t))21e2tdt.





Follow it by another change of variables 1e2t=z gives



140t2(ln(1e2t))21e2tdt=13210(ln(1z))2(ln(z))2z(1z)dz




=13210(ln(1z))2(ln(z))2zdz+13210(ln(1z))2(ln(z))2(1z)dz




I=11610(ln(1z))2(ln(z))2zdz(1).





Getting the exact result: Integral (1) can be evaluated as



11610(ln(1z))2(ln(z))2zdz=116lim



= \frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\beta(s,w+1)=\frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}




I=\frac{1}{4}\left( 2\zeta \left( 5 \right)-\zeta \left( 2 \right)\zeta \left( 3 \right) \right) \longrightarrow (*),





where \beta(u,v) is the beta function.



Other forms for the solution 1: Using integration by parts with u=\ln^2(1-z), integral (1) can be written as



\frac{1}{16}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right)^{2} \left( \ln \left( z \right)\right)^{2}}{z }}{dz}=\frac{1}{24}\,\int _{0}^{1}\!{\frac{ \ln\left( 1-z \right)\left( \ln \left( z \right) \right)^{3}}{1-z}}{dz}



= -\sum_{n=0}^{\infty}(\psi(n+1)+\gamma)\int_{0}^{1}z^n\ln^3(z)dz = \frac{1}{4}\sum_{n=0}^{\infty}\frac{\psi(n+1)+\gamma}{(n+1)^4}.





I= \frac{1}{4}\sum_{n=1}^{\infty}\frac{\psi(n)}{n^4}+\frac{\gamma}{4}\zeta(4)\sim 0.02413779000 \longrightarrow (**).




You can use the identity H_{n-1}=\psi(n)+\gamma , where H_n are the harmonic numbers, to write the result as




I=\frac{1}{4}\sum_{n=1}^{\infty}\frac{H_{n-1}}{n^4} \longrightarrow (***).





Other forms for the solution 2: We can have the following form for the solution




I=\frac{1}{16}\sum_{n=1}^{\infty}\frac{H^2_{n}}{n^3}+\frac{1}{16}\sum_{n=1}^{\infty}\frac{\psi'(n+1)}{n^3}-\frac{1}{16}\zeta(2)\zeta(3)\longrightarrow (****).




Note 1: we used the power series expansion of the function \frac{\ln(1-z)}{1-z},




\frac{\ln(1-z)}{1-z}= -\sum _{n=0}^{\infty } \left( \psi \left( n+1 \right) + \gamma \right){x}^{n}=-\sum _{n=0}^{\infty } H_{n}{x}^{n}.





Note 2: Try to tackle integral (1) using the technique used in solving your previous question.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...