Saturday 16 January 2016

calculus - Convergence of $ I=int_0^infty sin xsin(x^2)mathrm{d}x$



I am trying to prove that the improper integral

$$ I=\int_0^\infty \sin x\sin(x^2)\mathrm{d}x$$
converges.



Here's my work:



It suffices to show that
$$\int_\frac{\pi}{2}^\infty \sin (x) \sin(x^2)\mathrm{d}x$$
converges. Using integration by parts,



\begin{align*}

\int_\frac{\pi}{2}^\infty \sin (t) \sin(t^2)\mathrm{d}t&=\int_\frac{\pi}{2}^\infty \frac{\sin (t)}{2t}\cdot 2t\sin(t^2)\mathrm{d}t\\
&=\underline{\bigg[ -\frac{\sin (t)}{2t}\cos(t^2)\bigg]_\frac{\pi}{2}^\infty}+{\int_\frac{\pi}{2}^\infty \left(\frac{\sin (t)}{2t}\right)'\cos(t^2)\mathrm{d}t}
\end{align*}
The underlined part is a constant...



Then I got stuck. I'd like to use "sandwich rule" using the fact that $-1\leq \cos(t^2)\leq 1$, but I can't find a way to apply it properly.



How can I proceed from here? Any correction and/or help would be appreciated. :)


Answer



We shall use only substitution and integration by parts to show that the integral of interest, $\int_1^L \sin(x)\sin(x^2)\,dx$, is convergent.




First, enforcing the substitution $x\to \sqrt{x}$ reveals



$$\int_1^L \sin(x)\sin(x^2)\,dx=\frac12\int_1^L \frac{\sin(\sqrt{x})\sin(x)}{\sqrt{x}}\,dx \tag 1$$






Second, integrating by parts the integral on the right-hand side of $(1)$ with $u=\frac{\sin(\sqrt{x})}{\sqrt{x}}$ and $v=-\cos(x)$ yields



$$\begin{align}

\int_1^L \sin(x)\sin(x^2)\,dx&=\frac12\left.\left(-\frac{\sin(\sqrt{x})\cos(x)}{\sqrt{x}}\right)\right|_{x=1}^{x=L}\\\\
&+\frac14 \int_1^L \left(\frac{\cos(\sqrt{x})\cos(x)}{x}-\frac{\sin(\sqrt{x})\cos(x)}{x^{3/2}}\right)\,dx\tag2
\end{align}$$






Third, integrating by parts the first term in the integral on the right-hand side of $(2)$ with $u=\frac{\cos(\sqrt{x})}{x}$ and $v=\sin(x)$, we obtain



$$\begin{align}\int_1^L \frac{\cos(\sqrt{x})\cos(x)}{x}\,&=\left.\left(\frac{\cos(\sqrt{x})\sin(x)}{x}\right)\right|_{x=1}^{x=L}\\\\
&- \int_1^L \left(\frac{\sin(\sqrt{x})\sin(x)}{2x^{3/2}}+\frac{\cos(\sqrt{x})\sin(x)}{x^2}\right)\,dx\tag 3

\end{align}$$






Substituting $(3)$ into $(2)$ shows that all integrals involved are of the forms



$$I_1=\int_1^L \frac{\sin(\sqrt{x})\cos(x)}{x^{3/2}}\,dx$$



and




$$I_2=\int_1^L \frac{\cos(\sqrt{x})\sin(x)}{x^2}\,dx$$



Both $I_1$ and $I_2$ are absolutely convergent as $L\to\infty$ since $\int_1^\infty \frac{1}{x^{3/2}}\,dx<\infty$ and $\int_1^L \frac{1}{x^2}\,dx<\infty$.



Therefore, the integral of interest converges as was to be shown!.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...