Wednesday, 13 January 2016

Induction Proof $k^2 times 2^k$

I need help on this proof. I am not able to do it after setting m=m+1.




Prove by induction on n that sum of $k^2 \times 2^k$ from $k=1$ to $n$ is equal to $(n^2-2n+3) \times 2^{n+1}-6$



Base case:



Let $k=1$ so L.H.S side is $2$
Let $n=1$ so R.H.S side is $2$



Inductive hypothesis:




Let $n=m$ so $(m^2-2m+3) \times 2^{m+1}-6$



Proof:



Let $n=m+1$ so prove that $((m+1)^2-2(m+1)+3) \times 2^{m+2}-6=(m^2-2m+3) \times 2^{m+1}-6$



But I am not able to prove that they are equal.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...