Friday 28 October 2016

calculus - Unbounded operator between normed spaces

For every infinite sequence $x = (x_1, x_2, x_3, ...)$ of complex numbers define $S(x)$ by $S(x_1, x_2, x_3, ...) = (x_1, 2x_2, 3x_3, ...)$. Is $S$ in $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$?



I argue that $S$ is unbounded and hence not in $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$.



Proof: Firstly, using $|| x||_\infty \geq || x||_1$, we have that $$||S(x)||_\infty = \sup_n|S(x_n)| = \sup_n|n\cdot x_n|= n\cdot|| x||_\infty \geq n\cdot||x||_1.$$



This means that



$$\frac{||S(x)||_\infty}{|| x||_1} \geq n \rightarrow\infty$$




and hence, $S$ is unbounded with $||\cdot||_\infty$ norm and not a member of $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$ .

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...