For every infinite sequence $x = (x_1, x_2, x_3, ...)$ of complex numbers define $S(x)$ by $S(x_1, x_2, x_3, ...) = (x_1, 2x_2, 3x_3, ...)$. Is $S$ in $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$?
I argue that $S$ is unbounded and hence not in $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$.
Proof: Firstly, using $|| x||_\infty \geq || x||_1$, we have that $$||S(x)||_\infty = \sup_n|S(x_n)| = \sup_n|n\cdot x_n|= n\cdot|| x||_\infty \geq n\cdot||x||_1.$$
This means that
$$\frac{||S(x)||_\infty}{|| x||_1} \geq n \rightarrow\infty$$
and hence, $S$ is unbounded with $||\cdot||_\infty$ norm and not a member of $\mathcal{L}(\mathcal l^1, \mathcal l^\infty)$ .
No comments:
Post a Comment