I`m trying to solve this integral and I did the following steps to solve it but don't know how to continue.
$$\int \dfrac{1+\cos(x)}{\sin^2(x)}\,\operatorname d\!x$$
$$\begin{align}\int \dfrac{\operatorname d\!x}{\sin^2(x)}+\int \frac{\cos(x)}{\sin^2(x)}\,\operatorname d\!x &= \int \dfrac{\operatorname d\!x}{\sin^2(x)}+\int \frac{\cos(x)}{1-\cos^2(x)} \\
&=\int \sin^{-2}(x)\,\operatorname d\!x + \int \cos(x)\,\operatorname d\!x - \int \frac{\operatorname d\!x}{\cos(x)}\end{align}$$
Any suggestions how to continue?
Thanks!
Tuesday, 25 October 2016
integration - Evaluate $int frac{1+cos(x)}{sin^2(x)},operatorname d!x$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment