Sunday, 16 October 2016

elementary set theory - Understanding the proof for $ 2^{aleph_0} > aleph_0$

I'm trying to understand how $ 2^{\aleph_0} > \aleph_0 $. I was reading through this sketch of the proof, but don't quite understand how they show that $\mathrm{card}((0,1)) = \mathrm{card}(\mathcal{P}(\mathbb{N}))$. Is there a different way of explaining this? Or maybe a different way of explaining the whole proof? I'm just trying to wrap my head around this, so any help is appreciated!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...