Saturday, 15 October 2016

limits - Evaluate limlimitsntoinftysumnk=1frac1sqrtn+1kcdotsqrtk


lim




Maybe we can believe with assurance that



\sum_{k=1}^{n}\frac{1}{\sqrt{n+1-k}\cdot\sqrt{k}}\approx\sum_{k=1}^{n}\frac{1}{\sqrt{n-k}\cdot\sqrt{k}}=\frac{1}{n}\sum_{k=1}^n\frac{1}{\sqrt{\frac{k}{n}-\left(\frac{k}{n}\right)^2}}.
Thus, we can obtain
\lim_{n \to \infty}\sum_{k=1}^{n}\frac{1}{\sqrt{n+1-k}\cdot\sqrt{k}}=\int_0^1 \frac{{\rm d}x}{\sqrt{x-x^2}}=\pi
This is true? If so, how to prove it rigorously?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...