Wednesday, 26 October 2016

summation - Closed-form for Floor Sum 1

Does a closed form exist for the following sum?
$$\sum_{k=0}^n \lfloor \sqrt{k} + \sqrt{k + n} \rfloor$$



If not, why is this sum so radically different than the sums below?



Closed forms do exist for the following sums*:
$$\sum_{k=0}^n \lfloor \sqrt{k + n} \rfloor$$

$$\sum_{k=0}^n \lfloor \sqrt{k} \rfloor$$



There is this floor functional identity:
$$\lfloor \sqrt{k} + \sqrt{k + 1} \rfloor = \lfloor\sqrt{4k+2}\rfloor$$
Don't know if this will help.



Thanks



*Existing closed forms




$$\sum_{k=0}^n \lfloor \sqrt{k} \rfloor=2\left(\sum_{k=0}^{\lfloor \sqrt{n} \rfloor-1}k^2\right)+\left(\sum_{k=0}^{\lfloor \sqrt{n} \rfloor-1}k\right)+\lfloor\sqrt{n}\rfloor\left(n-\lfloor\sqrt{n}\rfloor^2+1\right)$$
$$\left(\sum_{k=0}^n k^2\right)=\frac{2n^3+3n^2+n}{6}$$
$$\left(\sum_{k=0}^n k\right)=\frac{n^2+n}{2}$$
$$\sum_{k=1}^n \lfloor \sqrt{k+C} \rfloor=\sum_{k=C+1}^{C+n} \lfloor \sqrt{k} \rfloor=\sum_{k=0}^{C+n} \lfloor \sqrt{k} \rfloor-\sum_{k=0}^{C} \lfloor \sqrt{k} \rfloor$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...