I’m currently stuck trying to evaluate this limit,
$$
\lim_{u\to0} \frac{3u}{\tan(2u)},
$$
without using L’Hôpital’s rule. I’ve tried both substituting for $\tan(2u)=\dfrac{2\tan u}{1-(\tan u)^2}$, and $\tan 2u=\dfrac{\sin 2u}{\cos 2u}$ without success. Am I on the right path to think trig sub?
Wednesday, 26 October 2016
Limit $lim_{uto0} frac{3u}{tan 2u}$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment