How to prove that $\int_{-\infty}^{\infty} \frac{1-\cos x}{x^2} dx$ equal to $\pi $?
Is there any simple approach that does not require knowledge in Fourier Analysis or Complex analysis?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment