Friday 10 November 2017

real analysis - Convergence of $int_0^1 frac{sqrt{x-x^2}ln(1-x)}{sin{pi x^2}} mathrm{d}x.$



I would like to prove the convergence of the Newton integral



$$\int_0^1 f(x)\mathrm{d}x =\int_0^1 \frac{\sqrt{x-x^2}\ln(1-x)}{\sin{\pi x^2}} \mathrm{d}x.$$



I split this into two integrals $\displaystyle\int_0^\epsilon f(x)\mathrm{d}x$ and $\displaystyle\int_\epsilon^1 f(x)\mathrm{d}x$. It is easy to show that the integral is convergent on $(0, \epsilon]$ by limit comparison with $\displaystyle\int_0^\epsilon \frac{\sqrt{x}x}{\pi x^2}\mathrm{d}x$.




But I cannot find anything to compare with around $x = 1$ on $[\epsilon, 1)$.


Answer



If you write $x = 1 - \delta$, you obtain



$$\int_0^{1-\varepsilon} \frac{\sqrt{(1-\delta)(1-(1-\delta))}\,\ln \delta}{\sin \bigl(\pi(1-\delta)^2\bigr)}\, d\delta = \int_0^{1-\varepsilon} \frac{\sqrt{\delta(1-\delta)}\,\ln \delta}{\sin \bigl(\pi(2\delta-\delta^2)\bigr)}\,d\delta,$$



and the integrand of that can be compared to the harmless



$$\frac{\sqrt{x}\,\ln x}{2\pi x}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...