Tuesday, 7 November 2017

trigonometry - Show that intpi/20sin3xcos2xcos7x dx=frac160.



Show that π/20sin3xcos2xcos7x dx=160
I could solve this integral by making use of the special expansion cos7x=64cos7x112cos5x+56cos3x7cosx and then using cosx=t. But I would like to know if there is a simpler way to solve this integral.


Answer




Use a0f(x)dx=a0f(ax)dx.   (1) Then I=π/20sin3xcos2xcos7x dx.   (2) becomesI=π/20cos3xsin2x(sin7x) dx.   (3) By adding (2) and (3), we get
2I=π/20sin2xcos2xsin6x dx=14(π/20(cos4x1)sin6x dx). I=18(π/20sin6xcos4xsin6x dx)=(π/20sin10x+sin2x16sin6x8)dx. I=1160+132148=160.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...