Thursday, 2 November 2017

elementary set theory - Prove that if set $A$ is denumerable and $xnotin A$ then $Acup {x}$ is denumerable.





Prove that if set $A$ is denumerable and $x\notin A$ then $A\cup\{x\}$ is denumerable.




See if my solution works:



Since $A$ is denumerable, there exists $f: \mathbb{N} \to A$ such that $f$ is a bijection.



Define $g:\mathbb{N} \to A$, $$g(n)=\begin{cases}x,&\text{if $n=1$,}\\f(n),&\text{ if $n\neq 1$}\end{cases}$$




Claim: $g$ is also bijective.



Let $n_1, n_2\in \mathbb{N}$ such that $g(n_1)=g(n_2)$.



If $g(n_1)=x$, then $n=1$. If $g(n_1)\neq g(n_2)$, then $g(n_1)=f(n_1)=g(n_2)=f(n_2)$. We have $f(n_1)=f(n_2)$. Since $f$ is a bijection, then $n_1=n_2$. Therefore $g$ is injective.



Let $b\in A\cup\{x\}$. There exists $n=1$ such that $g(n)=x=b$. If $n\neq 1$, then there exists $m\in\mathbb{N}$ such that $g(m)=f(m)=b$. Since $f$ is bijective, there exists $m\in\mathbb{N}$ such that $f(m)=b=g(m)$. So $g$ is surjective.



Therefore $g$ is bijective.




Therefore $A\cup \{x\}$ is denumerable.


Answer



If $A$ is denumerable then it has the form



$A=\{a_1,a_2,...,a_n,... \}$,



so $A\cup\{x\}$ can be written as



$A=\{x,a_1,a_2,...,a_n,... \}$,




then, if we write $b_1=x$, $b_2=a_1$, ... , $b_n=a_{n-1}$, ... ,



we have



$A=\{b_1,b_2,...,b_n,...\}$, which is a denumerable set


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...