Wednesday, 29 November 2017

calculus - Prove that $lim limits_{xto infty}e^{frac{ln(x)}{x}}=1$



How to prove that $\lim \limits_{x\to \infty}e^{\frac{\ln(x)}{x}}=1$?



I know that $x$ grows much faster to infinity then $\ln(x)$, therefore the limit equivalent to $e^0 = 1$



but that's not a rigorous proof.



Answer



$$\lim_{x \to \infty}\frac{\ln{x}}{x}=\lim_{x \to \infty}\frac{1}{x}=0$$



by L Hopital's Rule


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...