Evaluate $$\lim_{x\to 0_+}e^{\frac{1}{\sqrt{x}}}\cdot(1-\sqrt{x})^\frac{1}{x}$$
I tried using $$\lim_{x\to 0}(1+x)^\frac{1}{x} = e$$ like so:
$$l = \lim_{x\to 0_+}e^\frac{1}{\sqrt{x}}\cdot\bigg[\big(1+(-\sqrt{x})\big)^{-\frac{1}{\sqrt{x}}}\bigg]^{\frac{-1}{\sqrt{x}}} = \lim_{x\to 0_+}e^{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}}} = e^0 = 1$$
However, the right answer is $\frac{1}{\sqrt e}$. Why is it that the whole expression in square brackets can't be taken as $e$ in this case?
Friday, 24 November 2017
real analysis - Compute $limlimits_{xto 0_+}e^{frac{1}{sqrt{x}}}cdot(1-sqrt{x})^frac{1}{x}$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment