Saturday 4 November 2017

integration - Find values so that integral is a bounded operator

Find all positive values $\alpha$ for which the formula



\begin{align*}
A_\alpha u(x) = \int\limits_0^1 \frac{u(y)}{(x+y)^\alpha} \,dy
\end{align*}
defines a bounded operator in $L^1([0,1])$. Compute its norm.



I know that this defines a bounded operator for $\alpha <1$. What I did will not work for $\alpha \geq 1$. I tired to use specific $L^1$ functions but its not working. Do you have any advice on how to approach these types of problems?




\begin{align*}
||A_\alpha u(x)||_1 & = \int\limits_0^1\left| \int\limits_0^1 \frac{u(y)}{(x+y)^{\alpha}}\, dy \right|\,dx \\
& \leq \int\limits_0^1 \int\limits_0^1 \frac{|u(y)|}{(x+y)^{\alpha}}\,dy\, dx \\
& \leq \int\limits_0^1 \int\limits_0^1 \frac{|u(y)|}{x^{\alpha}}\,dy\, dx\\
& =\int\limits_0^1 ||u||_1 \frac{1}{x^{\alpha}}\, dx\\
\end{align*}



The integral above converges if $\alpha <1$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...