Monday 20 November 2017

How to prove Cauchy-Schwarz Inequality in $R^3$?




I am having trouble proving this inequality in $R^3$. It makes sense in $R^2$ for the most part. Can anyone at least give me a starting point to try. I am lost on this thanks in advance.


Answer



You know that, for any $x,y$, we have that



$$(x-y)^2\geq 0$$



Thus



$$y^2+x^2\geq 2xy$$




Cauchy-Schwarz states that



$$x_1y_1+x_2y_2+x_3y_3\leq \sqrt{x_1^2+x_2^2+x_3^3}\sqrt{y_1^2+y_2^2+y_3^3}$$



Now, for each $i=1,2,3$, set



$$x=\frac{x_i}{\sqrt{x_1^2+x_2^2+x_3^2}}$$



$$y=\frac{y_i}{\sqrt{y_1^2+y_2^2+y_3^2}}$$




We get



$$\frac{y_1^2}{{y_1^2+y_2^2+y_3^2}}+\frac{x_1^2}{{x_1^2+x_2^2+x_3^2}}\geq 2\frac{x_1}{\sqrt{x_1^2+x_2^2+x_3^2}}\frac{y_1}{\sqrt{y_1^2+y_2^2+y_3^2}}$$



$$\frac{y_2^2}{{y_1^2+y_2^2+y_3^2}}+\frac{x_2^2}{{x_1^2+x_2^2+x_3^2}}\geq 2\frac{x_2}{\sqrt{x_1^2+x_2^2+x_3^2}}\frac{y_2}{\sqrt{y_1^2+y_2^2+y_3^2}}$$



$$\frac{y_3^2}{{y_1^2+y_2^2+y_3^2}}+\frac{x_3^2}{{x_1^2+x_2^2+x_3^2}}\geq 2\frac{x_3}{\sqrt{x_1^2+x_2^2+x_3^2}}\frac{y_3}{\sqrt{y_1^2+y_2^2+y_3^2}}$$



Summing all these up, we get




$$\frac{y_1^2+y_2^2+y_3^2}{{y_1^2+y_2^2+y_3^2}}+\frac{x_1^2+x_2^2+x_3^2}{{x_1^2+x_2^2+x_3^2}}\geq 2\frac{x_1y_1+x_2y_2+x_3y_3}{\sqrt{y_1^2+y_2^2+y_3^2}\sqrt{x_1^2+x_2^2+x_3^2}}$$



$$\sqrt{y_1^2+y_2^2+y_3^2}\sqrt{x_1^2+x_2^2+x_3^2}\geq {x_1y_1+x_2y_2+x_3y_3}$$



This works for $\mathbb R^n$. We sum up through $i=1,\dots,n$ and set



$$y=\frac{y_i}{\sqrt{\sum y_i^2}}$$



$$x=\frac{x_i}{\sqrt{\sum x_i^2}}$$




Note this stems from the most fundamental inequality $x^2\geq 0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...