Tuesday, 21 November 2017

trigonometry - $(sintheta+costheta)^2=1+sin2theta$



49) $(\sin\theta+\cos\theta)^2=1+\sin2\theta$
Left Side:
\begin{align*}
(\sin\theta+\cos\theta)^2=\sin^2\theta+2c\cos\theta\sin\theta+cos^2\theta=1+2\cos\theta\sin\theta
\end{align*}
This can either be $1$ or I can power reduce it. I don't know.



Right Side:
\begin{align*}
1+\sin2\theta=1+2\sin\theta\cos\theta

\end{align*}



Thank you!


Answer



Open parentheses and use:



$$(1)\,\,\sin^2x+\cos^2x=1$$



$$(2)\,\,\sin 2x=2\sin x\cos x$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...