Wednesday 13 November 2013

abstract algebra - Prove that $[mathbf{Q}(sqrt{1+i},sqrt{2}):mathbf{Q}]=8$.



I am trying to calculate the Galois group of the polynomial $f=X^4-2X^2+2$. $f$ is Eisenstein with $p=2$, so irreducible over $\mathbf{Q}$. I calculated the zeros to be
$\alpha_1=\sqrt{1+i},\alpha_2=\sqrt{1-i},\alpha_3=-\alpha_1$ and $\alpha_4=-\alpha_2$. Let $\Omega_f=\mathbf{Q}(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=\mathbf{Q}(\alpha_1,\alpha_2)$ be a splitting field of $f$ over $\mathbf{Q}$. Since $\alpha_1\alpha_2=\sqrt{1+i}\sqrt{1-i}=\sqrt{2}$, we have $\Omega_f=\mathbf{Q}(\sqrt{1+i},\sqrt{2})$.



So if we can prove that $[\Omega_f:\mathbf{Q}]=8$, then we have $\#\operatorname{Gal} (f)=8$ and for $\operatorname{Gal}(f)\subset S_4$, we must have that it is isomorphic to the dihedral group $D_4$.



How do I go about proving $[\mathbf{Q}(\sqrt{1+i},\sqrt{2})]=8$?



Answer



You have shown that your splitting field is $K=\mathbf Q(\sqrt {1+i}, \sqrt {1-i})$. The two fields $\mathbf Q(\sqrt {1\pm i})$ are obviously quadratic extensions of $\mathbf Q(i)$, and these are equal iff $(1+i)(1-i)=2$ is a square in $\mathbf Q(i)$, iff $\sqrt 2\in \mathbf Q(i)$: impossible. Hence $K$ is a biquadratic extension of $\mathbf Q(i)$, and $[K:\mathbf Q]=8$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...