Monday, 25 November 2013

trigonometry - Showing that $0 < cos (theta)

$$0 < \cos (\theta)<\frac {\sin (\theta)}{\theta}<\frac {1}{\cos(\theta)} $$
for $\theta\in(0,\pi/2)$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...