Sunday, 10 November 2013

calculus - Closed form for $sum_{n=1}^{infty}frac{(-1)^n}{sqrt{n^2+a^2}}$

Do the convergent sum




$$\sum_{n=1}^{\infty}\frac{(-1)^n}{\sqrt{n^2+a^2}}$$



posses a closed form? ($a \in \mathbb{R}$)



Special case is known, for $a=0$ one recalls well known alternating harmonic series :



$$\sum_{n=1}^{\infty}\frac{(-1)^n}{n}=-\ln 2$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...