Find the Fourier Series for f(x)=sin(x)+cos(2x)
I got a0=0 which seems correct but I'm struggling with an and bn. Here are my attempts:
an=12πodd function⏞2π∫0cos(nx)sin(x)dx+2π∫0cos(nx)cos(2x)dx=12π[sin(nx)ncos(2x)]2π0−2⋅2π∫0sin(nx)nsin(2x)
If I integrate the second term again I get an even function again and again. I need a fitting addtion theorem or something else. Any hints?
Answer
a0=1π∫π−π(sin(x)+cos(2x)) dx=
1π[∫π−πsin(x) dx+∫π−πcos(2x) dx]=
Now, use: ∫sin(x) dx=C−cos(x)
1π[[−cos(x)]π−π+∫π−πcos(2x) dx]=
Substitute u=2x and du=2 dx.
This gives a new lower bound u=−2π and upper bound u=2π:
1π[[−cos(x)]π−π+12∫2π−2πcos(u) du]=
Now, use: ∫cos(x) dx=sin(x)+C
1π[[−cos(x)]π−π+12[sin(u)]2π−2π]=0
NEXT:
an=1π∫π−π(sin(x)+cos(2x))cos(nx) dx=
1π[∫π−πsin(x)cos(nx) dx+∫π−πcos(2x)cos(nx) dx]=
Now, as you noticed already:
Since sin(x)cos(nx) is an odd function and the interval [π,π] is symmetric about 0, so:
∫π−πsin(x)cos(nx) dx=0
1π∫π−πcos(2x)cos(nx) dx=
Use the trigonometric identity cos(a)cos(b)=cos(a−b)+cos(a+b)2:
12π∫π−π(cos(x(n−2))+cos(x(n+2))) dx=
12π[∫π−πcos(x(n+2)) dx+∫π−πcos(x(n−2)) dx]=
For the left integral:
Substitute u=x(n+2) and du=(n+2) dx.
This gives a new lower bound u=(−π)(n+2)=−π(n+2) and upper bound u=π(n+2):
12π[1n+2∫π(n+2)−π(n+2)cos(u) du+∫π−πcos(x(n−2)) dx]=
For the right integral:
Substitute s=x(n−2) and ds=(n−2) dx.
This gives a new lower bound s=(−π)(n−2)=−π(n−2) and upper bound s=π(n−2):
12π[1n+2∫π(n+2)−π(n+2)cos(u) du+1n−2∫π(n−2)−π(n−2)cos(s) ds]=
Now, use: ∫cos(x) dx=sin(x)+C
12π[1n+2[sin(u)]π(n+2)−π(n+2)+1n−2[sin(s)]π(n−2)−π(n−2)]=
sin(πn)π(n+2)+sin(πn)π(n−2)=2nsin(πn)π(n2−4)
NEXT:
bn=1π∫π−π(sin(x)+cos(2x))sin(nx) dx=
1π[∫π−πsin(x)sin(nx) dx+∫π−πcos(2x)sin(nx) dx]=
Now, as you noticed already:
Since cos(2x)sin(nx) is an odd function and the interval [π,π] is symmetric about 0, so:
∫π−πcos(2x)sin(nx) dx=0
1π∫π−πsin(x)sin(nx) dx=
Use the trigonometric identity sin(a)sin(b)=cos(a−b)−cos(a+b)2:
12π∫π−π(cos(x(n−1))−cos(x(n+1))) dx=
12π[∫π−πcos(x(n−1)) dx−∫π−πcos(x(n+1)) dx]=
For the right integral:
Substitute u=x(n+1) and du=(n+1) dx.
This gives a new lower bound u=(−π)(n+1)=−π(n+1) and upper bound u=π(n+1):
12π[∫π−πcos(x(n−1)) dx−1n+1∫π(n+1)−π(n+1)cos(u) du]=
For the left integral:
Substitute s=x(n−1) and ds=(n−1) dx.
This gives a new lower bound s=(−π)(n−1)=−π(n−1) and upper bound s=π(n−1):
12π[1n−1∫π(n−1)−π(n−1)cos(s) ds−1n+1∫π(n+1)−π(n+1)cos(u) du]=
Now, use: ∫cos(x) dx=sin(x)+C
12π[1n−1[sin(s)]π(n−1)−π(n−1)−1n+1[sin(u)]π(n+1)−π(n+1)]=
sin(πn)π(1−n)+sin(πn)π(1+n)=2sin(πn)π(1−n2)
CONCLUSION:
- a0=0
- an=2nsin(πn)π(n2−4)
- bn=2sin(πn)π(1−n2)
No comments:
Post a Comment