Evaluate∫γ(0;1)coszzdz. Write in parametric form and deduce that∫2π0cos(cosθ)cosh(sinθ)dθ=2π
By Cauchy's integral formula, ∫γ(0;1)coszzdz=2πi(cos0)=2πi
, but could anyone help with parametrization and deducing the above integral?
Answer
The circle is a parametrization over θ∈[0,2π]. Now let z=eiθ⟹dz=izdθ. Also note that
cosz=cos(cosθ+isinθ)=cos(cosθ)cos(isinθ)−sin(cosθ)sin(isinθ)
Use the fact that cosix=coshx and sinix=isinhx to get
cosz=cos(cosθ)cosh(sinθ)−isin(cosθ)sinh(sinθ)
Thus,
∮γ(0,1)dzcoszz=i∫2π0dθ[cos(cosθ)cosh(sinθ)−isin(cosθ)sinh(sinθ)]=i2π
Equating real and imaginary parts, the sought-after result follows.
No comments:
Post a Comment