Monday 18 November 2013

Convergence and divergence of an infinite series




The series is
$$1 + \frac{1}{2}.\frac{x^2}{4} + \frac{1\cdot3\cdot5}{2\cdot4\cdot6}.\frac{x^4}{8} + \frac{1\cdot3\cdot5\cdot7\cdot9}{2\cdot4\cdot6\cdot8\cdot10}.\frac{x^6}{12}+... , x\gt0$$
I just stuck over the nth term finding and once I get nth term than I can do different series test but here I am unable to find the nth term of the given series please help me out of this.
The question is different as it contains x terms and its nth term will be totally different from marked as duplicate question


Answer



Hint 1: Since $(4n-2)^2\gt(4n-1)(4n-3)$, we have
$$
\begin{align}
\frac{1\cdot3\cdots(4n-3)}{2\cdot4\cdots(4n-2)}

&\le\sqrt{\frac{1\cdot3\cdots(4n-3)}{3\cdot5\cdots(4n-1)}\cdot\frac{1\cdot3\cdots(4n-3)}{1\cdot3\cdots(4n-3)}}\\
&=\sqrt{\frac1{4n-1}}
\end{align}
$$
Hint 2: Since $(4n-3)^2\gt(4n-2)(4n-4)$, we have
$$
\begin{align}
\frac12\cdot\frac{3\cdot5\cdots(4n-3)}{4\cdot6\cdots(4n-2)}
&\ge\frac12\sqrt{\frac{4\cdot6\cdots(4n-2)}{4\cdot6\cdots(4n-2)}\cdot\frac{2\cdot4\cdots(4n-4)}{4\cdot6\cdots(4n-2)}}\\
&=\frac12\sqrt{\frac1{2n-1}}

\end{align}
$$






Thus,
$$
\frac12\sqrt{\frac1{2n-1}}\,\frac{x^{2n}}{4n}\le\frac{1\cdot3\cdots(4n-3)}{2\cdot4\cdots(4n-2)}\frac{x^{2n}}{4n}\le\sqrt{\frac1{4n-1}}\,\frac{x^{2n}}{4n}
$$
and therefore, since $4n-1\ge3n$ for $n\ge1$, we have

$$
\bbox[5px,border:2px solid #C0A000]{\frac{x^{2n}}{8\sqrt2\,n^{3/2}}\le\frac{1\cdot3\cdots(4n-3)}{2\cdot4\cdots(4n-2)}\frac{x^{2n}}{4n}\le\frac{x^{2n}}{4\sqrt3\,n^{3/2}}}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...