Sunday, 24 November 2013

analysis - Is the support of a compactly supported function on $Omega$ a proper subset of $Omega$?

Let $d\in\mathbb N$ and $\Omega\subseteq\mathbb R^d$ be open. Is there some continuous $\phi:\Omega\to\mathbb R$ with compact support $\operatorname{supp}$ and $\operatorname{supp}\phi=\overline{\Omega}$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...