Monday, 11 November 2013

combinatorics - Prove by a combinatorial argument that ${n choose r}{r choose s}={n choose s} {n-s choose r-s} $

Prove by a combinatorial argument that ${n \choose r}{r \choose s}={n \choose s} {n-s \choose r-s} $



Is a little hard for me solve this problem.



I see we need to use the multiplication principle. But is a little hard to me finding the idea for prove this...




Can someone give me a hint?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...