Sunday, 10 November 2013

number theory - Prove that powers of any fixed prime $p$ contain arbitrarily many consecutive equal digits.


Prove that powers of any fixed prime $p$ contain arbitrarily many consecutive equal digits.





It is an intuitive re-statement of Baltic Way 2012 (I think there are shortlists in Baltic Way every year and this is a part of the 2012 shortlist):




Prove that, for every prime $p$ and positive integer $a$, there exists a positive integer $n$ such that $p^n$ contains $a$ consecutive equal digits.




It is a tough one and I haven't found a solution on the Internet.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...