Monday, 18 November 2013

calculus - $gamma_j(t)=(-1)^j+frac{1}{2}exp(it)$ for $j=1,2$ $int_{gamma_1}f(z) mathrm{d}z + int_{gamma_2}f(z) mathrm{d}z$ on $[0,2pi]$

$f(z)=\frac{1}{z+1}+\frac{1}{z-1}$



$\gamma_j:[0,2\pi]\rightarrow \mathbb{C} \ (j=1,2,3)$



$\gamma_j(t)=(-1)^j+\frac{1}{2}\exp(it)$ for $j=1,2$



$\gamma_3(t)=4\exp(it)$




I need to compute



$\int_{\gamma_1}f(z) \mathrm{d}z + \int_{\gamma_2}f(z) \mathrm{d}z$ and $\int_{\gamma_3}f(z) \mathrm{d}z$.



Are there any better ways to compute these than using



$$\int_{0}^{2\pi}f(\gamma(t))\gamma'(t) \mathrm{d}t$$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...