f(z)=1z+1+1z−1
γj:[0,2π]→C (j=1,2,3)
γj(t)=(−1)j+12exp(it) for j=1,2
γ3(t)=4exp(it)
I need to compute
∫γ1f(z)dz+∫γ2f(z)dz and ∫γ3f(z)dz.
Are there any better ways to compute these than using
∫2π0f(γ(t))γ′(t)dt
?
f(z)=1z+1+1z−1
γj:[0,2π]→C (j=1,2,3)
γj(t)=(−1)j+12exp(it) for j=1,2
γ3(t)=4exp(it)
I need to compute
∫γ1f(z)dz+∫γ2f(z)dz and ∫γ3f(z)dz.
Are there any better ways to compute these than using
∫2π0f(γ(t))γ′(t)dt
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment