Monday, 18 November 2013

calculus - gammaj(t)=(1)j+frac12exp(it) for j=1,2 intgamma1f(z)mathrmdz+intgamma2f(z)mathrmdz on [0,2pi]

f(z)=1z+1+1z1



γj:[0,2π]C (j=1,2,3)



γj(t)=(1)j+12exp(it) for j=1,2



γ3(t)=4exp(it)




I need to compute



γ1f(z)dz+γ2f(z)dz and γ3f(z)dz.



Are there any better ways to compute these than using



2π0f(γ(t))γ(t)dt

?

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...