Friday, 22 November 2013

sequences and series - prove $lim_ {n rightarrow infty} frac{b^n}{n^k}=infty$












I have this sequence with $b>1$ and $k$ a natural, which diverges:
$$\lim_{n \rightarrow \infty} \frac{b^n}{n^k}=\infty$$
I need to prove this, with what i have learnt till now from my textbook, my simple step is this:



Since $n^2\leq2^n$ for $n>3$, i said $b^n\geq n^k$, so it diverges. Is it right?



I am asking here not just to get the right answer, but to learn more wonderful steps and properties.


Answer



$$\lim_{n \rightarrow \infty} \frac{b^n}{n^k}=\infty$$




You can use the root test, too: $$\lim_{ n\to \infty}\sqrt[\large n]{\frac{b^n}{n^k}} = b>1$$



Therefore, the limit diverges.






The root test takes the $\lim$ of the $n$-th root of the term: $$\lim_{n \to \infty} \sqrt[\large n]{|a_n|} = \alpha.$$



If $\alpha < 1$ the sum/limit converges.




If $\alpha > 1$ the sum/limit diverges.



If $\alpha = 1$, the root test is inconclusive.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...