Change the double integral ∬ where D = \{(x,y):x^2+y^2\leq4,y\geq0\} by changing to polar coordinates r, \phi
So am I right in thinking the limits would be 0 and 4 for x and y?
Converting the integral would be
\begin{align} & \int_0^4 \int_0^4 \sqrt{4-x^2-y^2} \, dx \, dy = \iint_D \sqrt{4-r^2\cos^2\phi-r^2\sin^2\phi} \ |r| \, dx \, dy \\[10pt] = {} & \iint_D \sqrt{4-r^2} \, |r| \, dx \, dy \end{align}
I am unsure how to change the coordinates?
No comments:
Post a Comment