I'm trying to solve evaluate this limit
$$\lim_{x\to\infty}\frac{\sqrt{x-1} - \sqrt{x-2}}{\sqrt{x-2} - \sqrt{x-3}}.$$
I've tried to rationalize the denominator but this is what I've got
$$\lim_{x\to\infty}(\sqrt{x-1} - \sqrt{x-2})({\sqrt{x-2} + \sqrt{x-3}})$$
and I don't know how to remove these indeterminate forms $(\infty - \infty)$.
EDIT: without l'Hospital's rule (if possible).
Answer
Fill in details:
As $\;x\to\infty\;$ we can assume $\;x>0\;$ , so:
$$\frac{\sqrt{x-1}-\sqrt{x-2}}{\sqrt{x-2}-\sqrt{x-3}}=\frac{\sqrt{x-2}+\sqrt{x-3}}{\sqrt{x-1}+\sqrt{x-2}}=\frac{\sqrt{1-\frac2x}+\sqrt{1-\frac3x}}{\sqrt{1-\frac1x}+\sqrt{1-\frac2x}}\xrightarrow[x\to\infty]{}1$$
Further hint: the first step was multiplying by conjugate of both the numerator and the denominator.
No comments:
Post a Comment