Monday, 14 July 2014

calculus - Find the value of : $lim_{xtoinfty}frac{sqrt{x-1} - sqrt{x-2}}{sqrt{x-2} - sqrt{x-3}}$




I'm trying to solve evaluate this limit



$$\lim_{x\to\infty}\frac{\sqrt{x-1} - \sqrt{x-2}}{\sqrt{x-2} - \sqrt{x-3}}.$$



I've tried to rationalize the denominator but this is what I've got



$$\lim_{x\to\infty}(\sqrt{x-1} - \sqrt{x-2})({\sqrt{x-2} + \sqrt{x-3}})$$



and I don't know how to remove these indeterminate forms $(\infty - \infty)$.




EDIT: without l'Hospital's rule (if possible).


Answer



Fill in details:



As $\;x\to\infty\;$ we can assume $\;x>0\;$ , so:



$$\frac{\sqrt{x-1}-\sqrt{x-2}}{\sqrt{x-2}-\sqrt{x-3}}=\frac{\sqrt{x-2}+\sqrt{x-3}}{\sqrt{x-1}+\sqrt{x-2}}=\frac{\sqrt{1-\frac2x}+\sqrt{1-\frac3x}}{\sqrt{1-\frac1x}+\sqrt{1-\frac2x}}\xrightarrow[x\to\infty]{}1$$



Further hint: the first step was multiplying by conjugate of both the numerator and the denominator.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...