Saturday, 19 July 2014

elementary number theory - Find the last digit of the exponent $x$.

Let
\begin{align}
p&=396543857870745963499374527519378569849832249490600276007703072957912\cdots\\
&\phantom{=}8049490077183813353745228056691
\end{align}



This number is a 100-digit prime number and 2 is a primitive root modulo $p$. Let $x$ be the unique positive integer with $1 \leq x \leq p-1$ so that $2^x \equiv 5 \pmod{p}. $



What is the last digit of $x$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...