Let
p=396543857870745963499374527519378569849832249490600276007703072957912⋯=8049490077183813353745228056691
This number is a 100-digit prime number and 2 is a primitive root modulo p. Let x be the unique positive integer with 1≤x≤p−1 so that 2^x \equiv 5 \pmod{p}.
What is the last digit of x?
No comments:
Post a Comment