Saturday, 19 July 2014

elementary number theory - Find the last digit of the exponent x.

Let
p=396543857870745963499374527519378569849832249490600276007703072957912=8049490077183813353745228056691



This number is a 100-digit prime number and 2 is a primitive root modulo p. Let x be the unique positive integer with 1xp1 so that 2^x \equiv 5 \pmod{p}.



What is the last digit of x?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...