Sunday 13 July 2014

Solve functional equation $f(2x) = N - frac{2x}{f(x)^2}$




I'm looking for a continuous solution to the functional equation



$$f(2x) = N - \frac{2x}{f(x)^2}$$



where $N$ is a constant natural number and $x \in \mathbb{R}$ is nonnegative. I don't have much experience with functional equations so I haven't tried anything yet. If it helps I'm mostly interested near $x=0$. Any ideas?


Answer



This is a simple study of $f(x)$ as $x\to0$.



Let $N>0$.




First case, if $f(0)=0$, then
$$\lim_{x\to0}\frac{2x}{f(x)^2}=N\implies f(x)=\sqrt\frac{2x}{N}+o(\sqrt x)$$



Second case, if $f(0)=N$,




  • Assuming $f(x)=N+ax+o(x)$, then
    \begin{align}
    f(x)^2 = \frac{2x}{N-f(2x)}&\implies N^2+o(1)=-\frac{2x}{2ax+o(x)}\\
    &\implies a=-N^{-2}

    \end{align}


  • Assuming $f(x)=N-N^{-2}x+bx^2+o(x^2)$, then
    \begin{align}
    f(x)^2 = \frac{2x}{N-f(2x)}&\implies N^2-2N^{-1}x+o(x)=\frac{1}{N^{-2}-2bx+o(x)}\\
    &\implies b=-N^{-5}
    \end{align}


  • And so on...



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...