Sunday, 20 July 2014

Sum of the series $frac{2}{5cdot10}+frac{2cdot6}{5cdot10cdot15}+frac{2cdot6cdot10}{5cdot10cdot15cdot20 }+cdots$

How do I find the sum of the following infinite series:
$$\frac{2}{5\cdot10}+\frac{2\cdot6}{5\cdot10\cdot15}+\frac{2\cdot6\cdot10}{5\cdot10\cdot15\cdot20 }+\cdots$$
I think the sum can be converted to definite integral and calculated but I don't know how to proceed from there.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...