How do I find the sum of the following infinite series:
$$\frac{2}{5\cdot10}+\frac{2\cdot6}{5\cdot10\cdot15}+\frac{2\cdot6\cdot10}{5\cdot10\cdot15\cdot20 }+\cdots$$
I think the sum can be converted to definite integral and calculated but I don't know how to proceed from there.
Sunday, 20 July 2014
Sum of the series $frac{2}{5cdot10}+frac{2cdot6}{5cdot10cdot15}+frac{2cdot6cdot10}{5cdot10cdot15cdot20 }+cdots$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment