Tuesday, 22 July 2014

linear algebra - Find the eigen values of $Q$


Find all eigen values of the following matrix $Q$:




Here $n=pq,p

$$Q=\begin{bmatrix}{(n-1)I}_{l\times l}&&&&&& J_{l\times n-l} \\J^T_{(n-l)\times l}&&&&&& A_{(n-l)\times (n-l) }\end{bmatrix}$$




$A$ is a diagonal matrix of the form



$$A=\begin{bmatrix}
C_{(q-1)\times (q-1)} & 0 \\
0 & D_{(p-1)\times (p-1)}
\end{bmatrix}$$



where $$C= \begin{bmatrix}
p(q-1) & 1 & 1 &\ldots & 1\\1 & p(q-1) & 1 & \ldots & 1\\1 & 1 & p(q-1) &\ldots & 1 \\ \ldots &\ldots& \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots& \ldots & \ldots \\ \ldots& \ldots& \ldots & \ldots &\ldots
\\1 &1 &1 &\ldots & p(q-1)

\end{bmatrix}$$



and $$D=
\begin{bmatrix}
q(p-1) & 1 & 1 &\ldots & 1\\1 & q(p-1) & 1 & \ldots & 1\\1 & 1 & q(p-1) &\ldots & 1 \\ \ldots &\ldots& \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots& \ldots & \ldots \\ \ldots& \ldots& \ldots & \ldots &\ldots
\\1 &1 &1 &\ldots & q(p-1)
\end{bmatrix}$$



where $J$ is the all $1$ matrix.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...