Calculate the limit lim
I now the answer, it is \displaystyle e^\frac{\log^2z}{2} , but I don't know how to prove it. It seems like this notable limit \displaystyle \lim \limits_{x \to \infty} {\left(1 + \frac{c}{x}\right)^x} = e^c should be useful here. For example I tried this way: (z^{1/\sqrt n} + z^{-1/\sqrt n}) = (z^{1/(2 \sqrt n)} - z^{-1/(2 \sqrt n)})^2 + 2
\displaystyle \lim \limits_{n \to \infty} {\left(\frac{z^{1/\sqrt n} + z^{-1/\sqrt n}}{2}\right)^n} = \displaystyle \lim \limits_{n \to \infty} {\left(1 + \frac{(z^{1/(2 \sqrt n)} - z^{-1/(2 \sqrt n)})^2}{2}\right)^n}
where (z^{1/(2 \sqrt n)} - z^{-1/(2 \sqrt n)})^2 seems close to \frac{\log^2 z}{n} .
Also we can say that \left(\frac{z^{1/\sqrt n} + z^{-1/\sqrt n}}{2}\right)^n = e^{n \log {\left(1 + \frac{\left(z^{1/(2 \sqrt n)} - z^{-1/(2 \sqrt n)}\right)^2}{2}\right)}} and \log {\left(1 + \frac{(z^{1/(2 \sqrt n)} - z^{-1/(2 \sqrt n)})^2}{2}\right)} can be expand in the Taylor series. But I can't finish this ways.
Thanks for the help!
Answer
Assume z>0. One may write, as n \to \infty,
\begin{align} z^{1/\sqrt n}=e^{(\log z)/\sqrt n}&=1+\frac{\log z}{\sqrt n}+\frac{(\log z)^2}{2n}+O\left(\frac1{n^{3/2}} \right)\\ z^{-1/\sqrt n}=e^{-(\log z)/\sqrt n}&=1-\frac{\log z}{\sqrt n}+\frac{(\log z)^2}{2n}+O\left(\frac1{n^{3/2}} \right) \end{align} giving
\frac{z^{1/\sqrt n} + z^{-1/\sqrt n}}{2}=1+\frac{(\log z)^2}{2n}+O\left(\frac1{n^{3/2}} \right) and, as n \to \infty,
\begin{align} \left(\frac{z^{1/\sqrt n} + z^{-1/\sqrt n}}{2}\right)^n&=\left(1+\frac{(\log z)^2}{2n}+O\left(\frac1{n^{3/2}} \right)\right)^n\\\\ &=e^{(\log z)^2/2}+O\left(\frac1{n^{1/2}} \right) \to e^{(\log z)^2/2} \end{align}
No comments:
Post a Comment