Thursday, 4 September 2014

How do I expand/solve the following summation?




$\sum\limits_{i=1}^{n-1} i$.



I know the answer is $\frac{1}{2}(n-1)n$ but I don't quite understand it how to get there.


Answer




\begin{align}
S=\sum_{i=1}^{n-1}i&=1+2+3+\ldots+n-1\\
S=\sum_{i=1}^{n-1}i&=n-1+n-2+n-3+\ldots+1
\end{align}
\begin{align}
2S&=(1+n-1)+(2+n-2)+(3+n-3)+\ldots+(n-1+1)\\
2S&=n+n+n+\ldots+n\\
2S&=n(n-1)\\
\therefore S&=\dfrac{n(n-1)}{2}
\end{align}



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...