Tuesday, 4 November 2014

calculus - How to prove that e = lim_{n to infty} (sqrt[n]{n})^{pi(n)}
= lim_{n to infty} sqrt[n]{n#}
?

While reading this post, I stumbled across these definitions (Wiki_german)



e=lim



and



e = \lim_{n \to \infty} (\sqrt[n]{n})^{\pi(n)}.



The last one seems interesting, since \lim_{n \to \infty} (\sqrt[n]{n})=1, proven

here.



How to prove these?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...