Tuesday, 4 November 2014

calculus - How to prove that e = lim_{n to infty} (sqrt[n]{n})^{pi(n)}
= lim_{n to infty} sqrt[n]{n#}
e = lim_{n to infty} (sqrt[n]{n})^{pi(n)}
= lim_{n to infty} sqrt[n]{n#}
?

While reading this post, I stumbled across these definitions (Wiki_german)



e=limnnn#



and



e=limn(nn)π(n).



The last one seems interesting, since limn(nn)=1, proven

here.



How to prove these?

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...