Tuesday, 4 November 2014

calculus - How to prove that $e = lim_{n to infty} (sqrt[n]{n})^{pi(n)} = lim_{n to infty} sqrt[n]{n#} $?

While reading this post, I stumbled across these definitions (Wiki_german)



$$e = \lim_{n \to \infty} \sqrt[n]{n\#}$$



and



$$e = \lim_{n \to \infty} (\sqrt[n]{n})^{\pi(n)}.$$



The last one seems interesting, since $ \lim_{n \to \infty} (\sqrt[n]{n})=1$, proven

here.



How to prove these?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...