I have a problem with this limit, i have no idea how to compute it.
Can you explain the method and the steps used?
lim
Answer
x\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)=\frac{x\left(\left(\sqrt{x^2-x}\right)^2-\left(\sqrt{x^2-1}\right)^2\right)}{\sqrt{x^2-x}+\sqrt{x^2-1}}
=\frac{x(1-x)}{\sqrt{x^2-x}+\sqrt{x^2-1}}
Since we're searching for the limit as x\to -\infty, let x<0. Then:
=\frac{\frac{1}{-x}(x(1-x))}{\sqrt{\frac{x^2}{(-x)^2}-\frac{x}{(-x)^2}}+\sqrt{\frac{x^2}{(-x)^2}-\frac{1}{(-x)^2}}}=\frac{x-1}{\sqrt{1-\frac{1}{x}}+\sqrt{1-\frac{1}{x^2}}}\stackrel{x\to -\infty}\to -\infty
Because \sqrt{1-\frac{1}{x}}\stackrel{x\to -\infty}\to 1 and \sqrt{1-\frac{1}{x^2}}\stackrel{x\to -\infty}\to 1 and x-1\stackrel{x\to -\infty}\to -\infty.
No comments:
Post a Comment