Monday, 10 November 2014

Limit of $lim_{xto 0} frac{sqrt{1-cos{(x^2))}}}{1-cos{x}}$ without L'hopital's rule or a series expansion



How does one evaluate the limit




$$\lim_{x\to 0} \frac{\sqrt{1-\cos{(x^2)}}}{1-\cos{x}}$$



Without using series expansion or L'hopital's rule? I know it's pretty straightforward to use a series expansion to get the limit of $\sqrt{2}$ but I wonder whether it is possible to evaluate this without such methods.


Answer



For $0<|x|<1$,
$$\begin{align}\frac{\sqrt{1-\cos(x^2)}}{1-\cos x}&=\frac{\sqrt{1-\left(1-2\sin^2\left(\frac{x^2}2\right)\right)}}{1-\left(1-2\sin^2\left(\frac x2\right)\right)}=\frac{\sqrt2\sin\left(\frac{x^2}2\right)}{2\sin^2\left(\frac x2\right)}\\
&=\left(\sqrt2\right)\left(\frac{\sin\left(\frac{x^2}2\right)}{\frac{x^2}2}\right)\left(\frac{\frac x2}{\sin\left(\frac x2\right)}\right)^2\end{align}$$
So
$$\lim_{x\rightarrow0}\frac{\sqrt{1-\cos(x^2)}}{1-\cos x}=\left(\sqrt2\right)\left(1\right)\left(1\right)^2=\sqrt2$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...